NADPH oxidase NOX5-S and nuclear factor κB1 mediate acid-induced microsomal prostaglandin E synthase-1 expression in Barrett's esophageal adenocarcinoma cells.
نویسندگان
چکیده
The mechanisms of progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA) are not known. Cycloxygenase-2 (COX-2)-derived prostaglandin E₂ (PGE₂) has been shown to be important in esophageal tumorigenesis. We have shown that COX-2 mediates acid-induced PGE₂ production. The prostaglandin E synthase (PGES) responsible for acid-induced PGE2 production in BE, however, is not known. We found that microsomal PGES1 (mPGES1), mPGES2, and cytosolic PGES (cPGES) were present in FLO EA cells. Pulsed acid treatment significantly increased mPGES1 mRNA and protein levels but had little or no effect on mPGES2 or cPGES mRNA. Knockdown of mPGES1 by mPGES1 small interfering RNA (siRNA) blocked acid-induced increase in PGE2 production and thymidine incorporation. Knockdown of NADPH oxidase, NOX5-S, a variant lacking calcium-binding domains, by NOX5 siRNA significantly inhibited acid-induced increase in mPGES1 expression, thymidine incorporation, and PGE2 production. Overexpression of NOX5-S significantly increased the luciferase activity in FLO cells transfected with a nuclear factor κB (NF-κB) in vivo activation reporter plasmid pNF-κB-Luc. Knockdown of NF-κB1 p50 by p50 siRNA significantly decreased acid-induced increase in mPGES1 expression, thymidine incorporation, and PGE₂ production. Two novel NF-κB binding elements, GGAGTCTCCC and CGGGACACCC, were identified in the mPGES1 gene promoter. We conclude that mPGES1 mediates acid-induced increase in PGE₂ production and cell proliferation. Acid-induced mPGES1 expression depends on activation of NOX5-S and NF-κB1 p50. Microsomal PGES1 may be a potential target to prevent or treat EA.
منابع مشابه
NADPH Oxidase NOX5-S and Nuclear Factor kB1 Mediate Acid-Induced Microsomal Prostaglandin E Synthase-1 Expression in Barrett’s Esophageal Adenocarcinoma Cells
The mechanisms of progression from Barrett’s esophagus (BE) to esophageal adenocarcinoma (EA) are not known. Cycloxygenase2 (COX-2)-derived prostaglandin E2 (PGE2) has been shown to be important in esophageal tumorigenesis.We have shown that COX2 mediates acid-induced PGE2 production. The prostaglandin E synthase (PGES) responsible for acid-induced PGE2 production in BE, however, is not known. ...
متن کاملSignaling in H2O2-induced increase in cell proliferation in Barrett's esophageal adenocarcinoma cells.
Mechanisms whereby acid reflux may accelerate the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. We have previously shown that NADPH oxidase NOX5-S generates reactive oxygen species (ROS) when Barrett's metaplastic cells are exposed to acid. Besides metaplastic cells, other H(2)O(2)-producing cells (e.g., inflammatory cells) present in BE m...
متن کاملSilencer-of-Death Domain Mediates Acid-Induced Decrease in Cell Apoptosis in Barrett's Associated Esophageal Adenocarcinoma Cells.
We have shown that NADPH oxidase (NOX)5-S may mediate the acid-induced decrease in cell apoptosis. However, mechanisms of NOX5-S-dependent decrease in cell apoptosis are not fully understood. In this study, we found that silencer-of-death domain (SODD) was significantly increased in esophageal adenocarcinoma (EA) tissues, EA cell lines FLO and OE33, and a dysplastic cell line CP-B. Strong SODD ...
متن کاملBile acid receptor TGR5, NADPH Oxidase NOX5-S and CREB Mediate Bile Acid-Induced DNA Damage In Barrett’s Esophageal Adenocarcinoma Cells
The mechanisms whereby bile acid reflux may accelerate the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. In this study we found that bile acid taurodeoxycholic acid (TDCA) significantly increased the tail moment (TM) and histone H2AX phosphorylation in FLO-1 EA cells, an increase which was significantly decreased by knockdown of TGR5. Over...
متن کاملSTAT5 mediates PAF-induced NADPH oxidase NOX5-S expression in Barrett's esophageal adenocarcinoma cells.
We have shown that NADPH oxidase NOX5-S is overexpressed in Barrett's esophageal adenocarcinoma (EA) cells and may contribute to the progression from Barrett's esophagus (BE) to EA presumably by increasing cell proliferation and decreasing apoptosis (Fu X, Beer DG, Behar J, Wands J, Lambeth D, Cao W. J Biol Chem 281: 20368-20382, 2006). The mechanism(s) of NOX5-S overexpression in EA, however, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 83 5 شماره
صفحات -
تاریخ انتشار 2013